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THE EFFECT OF VELOCITY PROFILES ON SUPERSONIC JET NOISE

T. R. S. Bhatt and S. N. Tiwari§

Department of Mechanical Engineering

Old Dominion University, Norfolk, VA 23529-0247

ABSTRACT

The effect of velocity profiles on supersonic jet noise are studied by using sta-

bility calculations made for a shock-free coannular jet, with both the inner and

outer flows supersonic. The Mach wave emission process is modeled as the noise

generated by the large scale turbulent structures or the instability waves in the

mixing region. Both the vortex-sheet and the realistic finite thickness shear layer

models are considered. The stability calculations have been performed for both

inverted and normal velocity profiles. Comparisons are made with the results for

an equivalent single jet, based on equal thrust, mass flow rate and exit area to that

of the coannular jet. The advantages and disadvantages of these velocity profiles

as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's

model prediction of the merits and demerits of different velocity profiles are in good

agreement with the experimental data.
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1. INTRODUCTION

The noise generated by aircraft in flight is a major environmental issue. This

has forced federal authorities to lay down stringent requirements on the noise gener-

ated (FAR-36 Stage III). Jet noise represents a significant percentage of the overall

noise generated. This suggests that the reduction of jet noise is of utmost impor-

tance to future development of a supersonic civil aircraft. In fact, the environmental

regulations require reduction of unsuppressed jet engine noise by 99 percent with-

out suffering any significant thrust loss, see Seiner and Krejsa [1]. Noise reduction

strategies, common to all those adopted by the US aircraft industry, involve meth-

ods to enhance mixing between two co-flowing streams with different velocity and

density ratio's. Most often one stream is subsonic, although there are instances

where both are supersonic. Previously, Brown and Roshko [2] have shown, for the

two-dimensional mixing layer, that the density ratio between two streams has lit-

tle effect on mixing in subsonic flow. The criteria for selecting the engine nozzle

geometry and stream velocity ratio is that it should (i) minimize the thrust loss,

(ii) reduce the extent of supersonic flow region through enhanced mixing, and (iii)

shield the noise sources in the inner flow.

The use of coannular jets as a means of reducing jet noise has been studied by

several people. Tanna, Tester and Lau [3] were one of the first ones to systematically

look at the noise generated by inverted profile coannular jets and compare it to the

noise generated by an equivalent single jet, having the same thrust, mass flow rate

and exit area as the coannular jet. Based on this comparison, it was shown that the

inverted velocity profile is quieter, particularly the low frequency component. The

effect of the inverted temperature profile was shown to be insignificant compared

to that of the inverted velocity profile. This provided support that the results

of Brown and Roshko concerning density ratio also extended into the supersonic

regime. Tanna [4] and Tanna and Morris [5] in their work showed that that the

normal velocity profile coannular jet is noisier than the equivalent single jet. All

these studies involved shock- free conditions and looked at the turbulent mixing

noise only. The effect of coannular jets on the shock associated noise was studied

by Tanna, Tam and Brown [6]. They concluded that the coannular jet provides

the maximum noise reduction relative to the equivalent single jet when the inner

(or primary) flow is slightly supersonic, regardless of whether it is an inverted or

normal velocity profile. All these suggest that there are some advantages in using



coannular jets, especially,the inverted velocity profile case.

The objectives of this study is to determine theoretically the velocity ratio

between two streams that would yield minimum far field generated noise. The

streams could both be supersonic or mixed flow (i.e. one stream subsonic) and not

necessarily parallel at the initial point of mixing (i.e. nozzle splitter). The inner flow

could also contain a solid boundary, such as a nozzle plug. Based on solutions to the

compressible Rayleigh model for hot single stream supersonic jets, Seiner, Bhat and

Ponton [7] have previously shown that the value of the total growth rate integral and

the instability wave phase speed were reliable indicators for determining dominant

noise radiated to the far field. From this study it was evident that the shape of

the mean velocity profile played a significant role in determining the values of the

growth rate integral and wave phase speed. The question of whether an initial dual

stream mean velocity profile shape could be found that minimized both the growth

rate integral and wave phase speed was a consequence of this previous study.

The initial efforts of finding such a mean velocity profile shape are presented in

this report. In order to establish validity to the model, however, requires that it be

validated to an existing data base. The normal (NVP) and inverted velocity profile

(IVP) jet is a rich source for acoustic data. For example, the IVP acoustic data of

Tanna, Tester and Lau [3] show a 3 PNdB noise reduction associated with supersonic

streams with a velocity ratio of 1.5. Unlike the experimental study, both the NVP

and IVP conditions will be examined theoretically, to establish which profile would

lead to lower radiated noise. The study also includes stability calculations for the

benchmark equivalent round single jet having the same thrust, mass flow rate and

exit area as the NVP and IVP jets. In all cases, the flows are assumed to be

shock-free, so that the noise is dominated by the Mach wave emission process.

The eddy Mach wave mechanism, first analytically described by Philips [8],

exists only when the turbulence is convected supersonically with respect to the

ambient speed of sound. Theoretical predictions have also been made by Ffowcs

Williams [9, 10] based on the Lighthill's acoustic analogy approach. However, this

approach is fully non-linear requiring extensive computing power. The approach

used here is based on the inviscid, linear instability wave model of Tam and Burton

[11]. This method is much simpler and easy to implement and has been applied

successfully in predicting the noise generated by high temperature supersonic jets,

see Seiner, Bhat and Ponton [7]. In this approach, the Mach wave emission process



is modeled as the noise generated by the large-scale turbulent structures (which

are considered as superposition of instability waves) in the mixing region. The

local characteristics and the axial development of the large-scale structures are

determined through the solution of the compressible Rayleigh's equation.

Stability calculations are carried out for a Strouhal number (St = 2fRi/Ui)

equal to 0.2 and different spatial modes of importance. This Strouhal number is

selected since, from previous studies with single round jets [7], it contains significant

acoustic energy in the far field. Also based on these previous studies [7], axisym-

metric mode (n = 0) and helical modes (n = 1 and 2) are found to be generally

most significant. In Sec. 2, two models for the instability waves are described.

At the jet exit, the simpler vortex-sheet model is used to provide a good estimate

of the wavenumber for the more realistic finite thickness shear layer model. The

numerical scheme used in solving the Rayleigh's equation is then described. In Sec.

3, numerical results obtained for the different cases are presented and finally, in

Sec. 4, a summary of the results is given and also ways of improving the model and

plans for future work are discussed.



2. ANALYSIS AND COMPUTATIONAL PROCEDURE

In this section, the equation governing the development of the instability waves

is given. The analysis and the numerical schemes are discussed for two different

models, i.e., a vortex-sheet model as well as a more realistic model with continuous

velocity profile and finite shear layer thickness. The simpler vortex-sheet model

provides a good estimate of the phase velocity of an instability wave. However,

for an accurate determination of the growth rate of the wave, the finite thickness

mixing layer model has to be used. The vortex-sheet model also provides a good

initial estimate of the wavenumber for the finite thickness model.

2.1 Vortex-Sheet Model

Consider a coannular jet bounded by vortex-sheets as shown in Fig. 2.1. It is

assumed that the ambient air is static. The inner flow (denoted by subscript i) has

a velocity Ui and radius R_ and the corresponding values for the outer flow (denoted

by subscript o) are Uo and Ro. A cylindrical coordinate system, (r, 0, z), is used

as shown in Fig. 2.1 with the z-axis in the flow direction. Using the linearized

continuity, momentum and energy equations, it can be shown that the perturbed

pressures are governed by

+ Ui pi - C_V2Pi = 0 (r < Ri) (2.1)

[__ _ _ (Ri < < Ro) (2.2)
0 +Uo po-C oV po=O r

02P_ 2 2 (r > Ro) (2.3)C_V p_ = 0
Ot 2

where V 2 is the Laplacian operator, Ci, Co and C_ are the speeds of sound in

the inner, outer and ambient flow regions and the pressure disturbances in these

regions are represented by pi, Po and pa, respectively. The equations are non-

dimensionalized with respect to Ui, Pi and Ri. The radial displacements of the

inner and outer vortex-sheets are given by 7/_(0, z, t) and etao(O, z, t), respectively.

The dynamic and kinematic boundary conditions at r = Ri are

Pi =Po
(2.4)



and

Pi Or -- + Vi-_-_x T]i

po 0,. - -_ + Uo

The conditions to be satisfied at r = Ro are

5

(2.5)

_ (2.6)

PO _ P_ (2.7)

and

+ Uo 71o (2.8)

10p_ 02rio

p_ Or &2
(2.3)

The perturbation pressure and the radial displacement are assumed to take the form

p(r,o,_,t) = _(r)exp[i(._ + no- _t)] (2.10)

r/(0, x,t) = 7) exp [i(ax + nO - wt)] (2.11)

where a is the axial wavenumber, w is the angular frequency and n is the azimuthal

mode number. Using the form given by Eq. (2.10), it is straightforward to show

that the solutions of Eqs. (2.1-2.3) satisfying the boundedness conditions at r = 0

and r ----+ (x:) are_

_i(r) = AnJ=(kir) (2.12)

and

where

/_o(r) = BnJ,_(kor) + C,_Yn(kor) (2.13)

p_(r)=D,_H,_(k_r) (2.14)

k, = [(,o- ,_u,)_/c?- ,_]_/_

ko= [(_-_Uo)_/c_o-_] _/_

Here Jn and Y,_ are the Bessel's functions of the first and second kind of order

n, respectively and Hn is the Hankel function of the first kind of order n. The
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quantities An, B,_, C,_ and D,_ are the unknown coefficients. The dispersion rela-

tionship between the wavenumber and angular frequency can be obtained by using

Eqs. (2.4-2.9) and is given by

D(w,a) = M1M2 - M3M4 = 0 (2.15)

where

M1- k°2Y',,(koRi ) ki J_(kiRi)y,_(koRi) (2.16)
Polo Pi12_ J_(kiRi)

ko S'(koRo) ko H'.(ko o)- - J,_(koRo) (2.17)
M2 port2° pau.,2 Hn(ka o)

ki g_(kiRi) j,_(koR,) ko J_(koRi) (2.18)
M3 - pin_ Jn(kiRi) po122o

ka H_(kaRo) ko Y_(koRo) (2.19)M4 = po,,,2 Y.(koRo) pon °

9ti = w - aUi, 12o = w - aUo and the primes denote derivatives. For a given

frequency, w, the wavenumber, a, is given by the roots of Eq. (2.15). In the next

section, the details of the finite thickness shear layer model are presented.

2.2 Finite Thickness Shear Layer Model

Consider the coannular jet flow field shown schematically in Fig. 2.2. The flow

field can be divided into four regions: (i) the inner core region, where the mean flow

properties are uniform, (ii) the inner mixing region which separates the inner and

outer core regions, (iii) the outer core region, and (iv) the outer mixing region which

separates the outer core region from the ambient fluid. The linearized equations of

motion for an inviscid, compressible fluid together with the instability wave theory

can be reduced to the Rayleigh's equation for the perturbation pressure which is

given by

02/5 O/512aOU 1 lop
Or---7 + Orr [12 0---_-+ +/32/5 = 0 (2.20)r p Or

where 12 = w - aU and/32 __ pM_f_2 _: n2/r2 _ a2. Here U and p are the mean axial

velocity and density, respectively and Mi is the Mach number of the inner flow.

All the variables have been non-dimensionalized with respect to the variables of the

inner flow. Equation (2.20) governs the axial development of an instability wave of a

given real frequency, w, azimuthal mode number, n, and a, the axial wavenumber,
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is the unknown eigenvalue of the problem. Once again, a cylindrical coordinate

system, (r, 0, z) is chosen with the jet axis in the z-direction. It is assumed that

the flow is locally parallel and that the fluctuating pressure takes the form given by

Eq. (2.10).

The eigenvalue can be determined by integrating Rayleigh's equation numeri-

cally. The integration can be carried out once the mean velocity and density profiles

are defined. It is assumed that the mean velocity can be closely approximated by a

half-Gaussian profile. The velocity profile for the inner shear layer is given by

Ui(r) = A + (1 - _)f(¢'i) (2.21)

and for the outer shear layer by

Uo(r) = Af(_o) (2.22)

where A = Uo/Ui, is the velocity ratio and

f({)=exp[-ln(2) _2], __ (v-h)
b (2.23)

In Eq. (2.23), h is the radius of the uniform core region and b is the half-width of

the mixing layer. The mean density is related to the mean velocity by the Crocco's

relation.

In regions of constant mean flow properties, i.e., the inner and outer core regions

and the ambient region, Eq. (2.20) can be solved analytically for the perturbation

pressure. These solutions which satisfy the boundedness conditions at v = 0 and

r --+ <x_ are

and

where

#,(r) = A,_Jn(_ir)

_o(r) = B,Jn(_or) + C,_Y,_(3or)

(2.24)

(2.25)

_5_(r) = D,_H,_(_r) (2.26)

= _

/_a : 2 2[Mipaw -a2] a/2



As before, the subscripts i,o and a represent the inner, outer and ambient flow

regions. These solutions provide the starting values for the numerical integration.

In the next section, the details of the numerical scheme to determine the axial

wavenumber are discussed.

2.3 Numerical Scheme

First of all, to calculate the axial development of an instabihty wave, the axial

variation of the core radius and the half-widths for the inner and outer flows have to

be defined. Usually, this information is obtained from the measured mean velocity

data. Here, both the inner and outer flows are supersonic and we were unable to

locate adequate data for this case. So, for present purposes, some assumptions have

been made regarding the growth of the shear layers. The growth rate of the shear

layer is determined from the Langley curve as a function of convective Mach number,

see Bradshaw [12]. It is also assumed that the half-velocity point corresponds to

the nozzle lip line. This determines hi, bi, ho and bo as a function of downstream

distance.

As mentioned before, Eq. (2.20) is integrated numerically in the shear layer.

The solutions given by Eqs. (2.24-2.26) provide the starting solutions for the inte-

gration. Two sets of integrations are carried out. The first integration is started

from the outer boundary of the inner core region and is integrated through the

inner shear layer to the inner boundary of the outer core region. This solution is

matched with the known analytic solution in the outer core region. The matching

condition requires that the pressure and its derivative be continuous. The second

integration is started at the outer boundary of the outer core region and is inte-

grated through the outer shear layer to the ambient flow region. Once again, the

integrated and the known solutions are matched. The matching conditions lead to

a system of homogeneous equations for the unknown coefficients, A,_, B,_, C,_ and,

D,_. For this system of equations to have non-trivial solutions, the determinant of

the coefficient matrix should be zero. The axial wavenumbers, a, are obtained in an

iterative fashion by finding the zeroes of the determinant using a Newton- Raphson

scheme. The initial guess for the wavenumber is obtained from the solution of the

vortex-sheet model. The other details of the scheme are not elaborated here and

can be found in Tam and Burton [11] and also in Seiner and Bhat [13].



3. NUMERICAL RESULTS

As discussed earlier, the mean velocity profile has to be defined first. The

growth rate of the shear layer and from it the potential core radius and the half-

velocity point are determined based on the assumptions discussed earlier. Two

different cases are considered. The first case is the one with inverted velocity profile

(IVP) and the second case is the normal velocity profile (NVP). The values of the

flow parameters for these two cases are:

Case h Ratio of radii, Ro/RI = 3.0, Mi = Mo = 1.48, Velocity ratio, Uo/Ui = 1.91,

Static temperature ratios, To/Ti = 3.65 and Ta/Ti = 1.35.

Case II: Ratio of radii, Ro/Ri = 3.0, Mi = Mo = 1.48, Velocity ratio, Uo/Ui =

0.52, Static temperature ratios, To/Ti = 0.27 and Ta/Ti = 0.37.

The growth of the inner and outer shear layers as calculated from the Langley

curve for the two cases are shown in Figs. 3.1 and 3.2. The Langley experimental

curve relates the shear layer spread coefficient, Ca, to the shear layer convective

Mach number, MR, in the potential core region of a jet. If 6(x) represents the

width of the shear layer, then

IVo - I
dx (Uo + Ui)

The convective Mach numbers of the inner and outer shear layers are respectively

determined from

21Uo - Ui [ 2Uo
Mn, = , Mno-

Co + Ci Co + Ca

Here Ci, Co and Ca are the speeds of sound in the inner, outer and ambient flow

regions, respectively. In both the cases, the calculations have been stopped at the

end of either the inner or outer core region. This is due to lack of mean velocity data

in the fully developed region. For both the inverted and normal velocity profiles,

based on the growth rates, it can be seen that the end of outer core region is reached

first. These figures also show that the growth rates are low, which, considering the

assumptions made, is not entirely unexpected.

The two characteristics associated with an instability wave that are important

for the noise radiated to the far field are the phase velocity and growth rate. The

location and emission angle of the jet sound field are determined by the phase

velocity and growth rate. The stability calculations, from which the values of these
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two quantities can be determined, have been carried out for a Strouhal number

of 0.2 and three mode numbers. There are two eigenvalues or wavenumbers for a

given frequency and mode number corresponding to the two shear layers. In all the

results presented here for the inverted and normal velocity profiles, an eigenvalue

is represented by m = (i,j) where i represents the first or second eigenvalue and

j corresponds to the mode number ( 0 for axisymmetric mode, 1 for helical mode

and so on). Figures 3.3 and 3.4 show the phase velocity with respect to the ambient

speed of sound and the growth rates of the various modes for the case of inverted

velocity profile. All the waves have supersonic phase velocities and hence would

generate Mach wave radiation. The phase velocities of the waves corresponding to

the first eigenvalues are higher than those corresponding to the second eigenvalues.

However, the growth rates of the second eigenvalues are higher, to about X/Ri

20.0, beyond which the first set of eigenvalues have slightly higher growth rates.

The waves corresponding to the first set of eigenvalues reach their neutral point

much further downstream than the second set of waves. Based on our assumptions,

the potential core lengths have been calculated to be about 35Ri for the outer shear

layer and 50Ri for the inner shear layer. This stretching of the core regions results in

a relatively slow rate of decay of the wave, particularly for the first set of eigenvalues.

It can also be seen that, though the helical modes have slower phase velocities, their

growth rate is much higher than that corresponding to the axisymmetric mode. All

these suggest that the noise radiated will be dominated by the waves corresponding

to the second set of eigenvalues, especially the helical modes.

Figures 3.5 and 3.6 show the phase velocities and growth rates for the case of

normal velocity profile. The phase velocities of the first set of eigenvalues are much

higher than those of the second set of eigenvalues. The waves corresponding to

the second set of eigenvalues have subsonic phase velocity and will not contribute

to the Mach wave radiation process. Once again, the growth rates of the second

eigenvalues are much higher than those corresponding to the first eigenvalues up

to X/Ri of about 10.0. As before, the first set of eigenvalues damp out further

downstream than the second set. However, there appears to be little difference in

phase velocities and growth rates of the second set of eigenvalues for the three modes

considered. In this case, the noise generated by the first set of waves will dominate

the far field. Comparing the results for the inverted and normal velocity profiles, it

can be seen that the growth rates for NVP are higher (almost double for the second
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set) than that for IVP. The phase velocities (for the first set of eigenvalues) for NVP

are higher than the wave speeds of IVP. This implies that the noise radiated by the

coannular jet with NVP could be higher than that with the IVP even in the case

with both flows supersonic.

Calculations have also been carried out for the equivalent single jet (ESJ). The

physical dimensions and the flow parameters for the single jet have been obtained by

keeping the thrust, mass flow rate and the exit area same as that in the coannular

jet cases. The parameters so obtained are not very different from those of the

coannular jet (for both the normal and inverted velocity profiles). For example,

the parameters of the ESJ calculated based on the IVP case are: Rj/Ri = 3.0,

Uj/Ui = 1.81 and Tj/Ti = 3.28. However, unlike the coannular jets, there is only

one shear layer in the case of ESJ. Even in the case of ESJ, the spread rate of the

shear layer is determined from the Langley curve [12]. In both the cases, the non-

dimensionalizing variables are kept the same, i.e. the flow parameters of the inner

flow of the coannular jet. All the comparisons are made for a Strouhal number of

0.2.

The comparisons of the phase velocities between IVP and the ESJ are shown

in Figs. 3.7 and 3.8. The first set of eigenvalues of IVP have higher phase speeds

than those of ESJ. Close to the jet exit, the phase velocities of the ES3 are slightly

less than that of the second set of eigenvalues of IVP for all the modes considered.

However, near the axial location for peak noise emission, which, based on the experi-

mental observations of Troutt and McLaughlin [14] and Seiner, McLaughlin and Liu

[15] occurs near the location of each wave's neutral point, the waves corresponding

to the ESJ are traveling faster than those corresponding to the IVP jet.

The growth rates are compared in Figs. 3.9 and 3.10. ESJ has much higher

growth rate in comparison with the first eigenvalues of the IVP coannular jet. In

comparison with the second set of wavenumbers, the waves of the ESJ start off with

a higher value than that of the coannular jet. This changes at locations further

downstream where the waves of the IVP jet have a slightly higher growth rate.

Considering the first set of wavenumbers of IVP and the ESJ, it is not clear as to

whether the noise radiated by one is higher than the other. The reason is, even

though the growth integrals of ESJ are higher than those of IVP, the waves of

IVP are travehng faster. In the case of second eigenvalues of IVP jet, the growth

integrals are comparable for the two cases. However, the waves of ESJ are traveling
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faster than those of IVP. This suggeststhat the noise radiated by ESJ would be

more than that by IVP jet.

The comparison of the phasevelocities betweenESJ and NVP jet are shown

in Figs. 3.11 and 3.12. The phase speedsof NVP jet (based on the first set of

eigenvalues)are much higher than those of ESJ. In fact, the phase velocities of

the waves of ESJ are subsonic,except in regionsclose to the jet exit. However,

when comparedwith the secondset of eigenvalues,the phasevelocitiesof the ESJ

are higher than that of the wavesof the coannular jet. In this case, the wavesof

NVP jet are traveling subsonically and would not lead to Mach wave radiation.

The growth rates are compared in Figs. 3.13 and 3.14. The growth rates of ESJ

are much higher when comparedwith first eigenvaluesof NVP jet, but there is no

appreciabledifferencewhencomparedwith the secondset of eigenvaluesof NVP jet.
As the wavesof ESJ are traveling subsonically,irrespectiveof the growth rates, the

noiseradiated by the Machwaveemissionprocesswould be higher for the NVP jet.

This result is consistentwith what wasobservedearlier [g, 5], both, experimentally

and theoretically.
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4. DISCUSSION AND CONCLUSIONS

In this study, the compressible Rayleigh's equation is solved to analyze the

instability waves or the large-scale structures of coannular jets with both the nor-

mal and inverted velocity profiles. These calculations have been performed for a

Strouhal number of 0.2 and the first three azimuthal modes of the Kelvin-Helmholtz

waves. The important characteristics of the instability waves, i.e., phase velocity

and growth rate, are considered. It is seen that in general, the axisymmetric mode

has a higher phase velocity than the helical modes. The growth rates, on the other

hand, are higher for the helical modes as compared to that of the axisymmetric

mode. These observations are similar to that of a single jet and, based on the far

field calculations for the single jet, it would seem that the helical modes dominate

the noise radiated even in the case of coannular jets. The stability calculations in-

dicate that of the two cases considered, NVP and IVP, the IVP coannular jet would

be quieter. These solutions when compared with the calculations for the equivalent

single jets, also show trends consistent with past observations. In spite of all this,

definite conclusions on the noise radiated by different velocity profiles can only be

made when the stability calculations are used to determine the far field noise.

The results presented here are preliminary. This study should be considered

more as a feasibility study and not for making actual comparisons of the merits and

demerits of different velocity profiles with regard to noise generation. The reason

for this is that in the present analysis, the mean velocity profile is assumed to be

known from experimental data. However, as mentioned earlier, we were not able to

get this information for the case with both inner and outer flows being supersonic.

As a result, some very simplifying assumptions were made regarding the spread rate

of the shear layers. Unpublished work of Propulsion Aeroacoustics Group (PAG) at

NASA Langley indicates that the selected spread rates based on the Langley curve

may be significantly conservative when applied to supersonic jets. This curve was

established from data taken from the two-dimensional shear layer. For a shock-free

Mach 2 axisymmetric jet operating into still air, the PAG has measured a shear

layer spread rate of d,5/dz = 0.2. The corresponding value from the Langley curve

is 0.085. Thus one would expect that once measured mean velocity profiles were

determined for the coannular jet, significantly different values for the instability

wave growth rate would be determined.

The analysis could not be extended well past the end of the core regions as the
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mean velocity in the fully developed region has to defined. This is the reason for

selecting a radius ratio, Ro/Ri, of 3.0, which is higher than the typical values used

for coannular jets, so that the end of core region is not close to the jet exit. The

analysis, however, predicts some of the merits of using the inverted velocity profile

in comparison to the coannular jet with the normal velocity profile. The stability

calculations also could not be used to make predictions of the far field noise. This

requires that the stability calculations be extended well into the fully developed

region to completely determine the growth and decay of an instability wave in

order to compute the far field directivity. This is especially true for low frequency

waves as they damp out farther downstream than the high frequency components.

Here, the calculations were stopped whenever the end of either the inner or outer

core regions was reached. However, the analysis can be easily extended into the fully

developed region provided the mean velocity is known. A more complete analysis

has to be done once the data on the mean velocity profiles become available.

4.1 Future Work

Currently, efforts are under way to compute the mean flowfield of the jets

(both supersonic and subsonic) and predict the growth rates of the shear layers

using computational fluid dynamics (CFD) techniques. This approach will be used

to determine the input required for the stability calculations and noise prediction

when the experimental data is not available. The CFD algorithm used here is

the CRAFT code, Molvik and Merkle [16] and Sinha et al. [17]. CRAFT solves

the 1D/2D/Axi/3D Navier-Stokes equations employing upwind/implicit Roe/Total

Variation Diminishing (TVD) techniques in a finite-volume framework. These cal-

culations will enable us to determine the mean velocity and the growth rate of the

shear layer more accurately. Furthermore, the stability calculations can be extended

beyond the end of the core region and the far field noise radiation can be predicted.

The Rayleigh's equation is a linear model and does not take into account the

interaction of the instability waves. The effect of the nonlinear interaction of the

waves can be neglected if the amplitude of the disturbances, which initiate the

instability waves, near the nozzle exit are small. This assumption may not be

valid in all cases. The interaction of these waves can be modeled by performing a

nonlinear stability analysis using the parabolized stability equations. The governing

equations are parabolized by assuming that the velocity profile, wavelength and
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growth rate of the wavesvary slowly in the axial direction. This implies that the

secondderivatives oq2/Oz2 and products of first derivatives O/Oz are small and can

be neglected. The second assumption is that the disturbances grow and decay

as convected instabilities. This analysis also accounts for non-parallel flows. This

approach has been successfully applied for stability of boundary layers by Bertolotti

[18], Chang et al. [19], amongst others.

In the analysis presented in this report, there is an unknown initial amplitude

(at the jet exit) for each of the instability waves considered. In order to make any

quantitative predictions on the far field noise, this unknown quantity has to be

determined. This would also help in determining the relative contributions by the

individual waves to the overall noise radiated. This information can then be used

to selectively amplify (or damp) the wave with the least (or most) contribution to

the noise field thereby minimizing the jet noise generated. One possible way of

determining this initial amplitude is the stochastic approach suggested by Tam and

Chen [20]. In this approach, the instability wave spectrum of the jet is regarded as

generated by white noise excitation at the jet exit. The future work would involve

implementing this scheme in coannular jets. The other work to be done is to include

an external low speed (i.e. Mf < 0.3) flow field to account for forward flight effects.
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